
Numerical Methods

Zi-Seok Lee

2023-11-06

• Euler’s Method

• Improved Euler’s Method

• Fourth-Order Runge-Kutta Method

Three Different Methods of Approximation

• Each of these methods involves an iterative process

• We find a sequence of points 𝑡𝑘 , 𝑥𝑘 that approximates the graph of a solution to

ሶ𝑥 = 𝑓 𝑡, 𝑥

• Begin with an initial value t0, 𝑥 0 = 0, 𝑥0

• Choose a sufficiently small step size Δ𝑡 and recursively generate 𝑡𝑘+1 = 𝑡𝑘 + Δ𝑡

Main Idea: Approximation by Iteration

• Approximate the next step using a line:

→ 𝑥𝑘+1 = 𝑥𝑘 + 𝑓 𝑡𝑘 , 𝑥𝑘 ⋅ Δt

Euler’s Method

• We use the average of two slopes from 𝑡𝑘 , 𝑥𝑘 to (𝑡𝑘+1, 𝑥𝑘+1)

𝑚𝑘 = 𝑓(𝑡𝑘 , 𝑥𝑘)

𝑛𝑘 = 𝑓(𝑡𝑘+1, 𝑦𝑘)

• Here, 𝑦𝑘 = 𝑥𝑘 +𝑚𝑘Δ𝑡 is the point determined by the original Euler’s method.

• Then we have

𝑥𝑘+1 = 𝑥𝑘 +
𝑚𝑘 + 𝑛𝑘

2
Δ𝑡

Improved Euler’s Method

• This method has served as a general-purpose solver for decades

𝑥𝑘+1 = 𝑥𝑘 +
𝑚𝑘 + 2𝑎𝑘 + 2𝑏𝑘 + 𝑐𝑘

6
Δt

• Let’s draw on the board to understand this method.

o 𝑚𝑘 = 𝑓 𝑡𝑘 , 𝑥𝑘 as in Euler’s method

o 𝑎𝑘 = 𝑓(𝑡𝑘 +
Δ𝑡

2
, 𝑦𝑘) where 𝑦𝑘 = 𝑥𝑘 +𝑚𝑘

Δ𝑡

2

o 𝑏𝑘 = 𝑓(𝑡𝑘 +
Δ𝑡

2
, 𝑧𝑘) where 𝑧𝑘 = 𝑥𝑘 + 𝑎𝑘

Δ𝑡

2

o 𝑐𝑘 = 𝑓(𝑡𝑘+1, 𝑤𝑘) where 𝑤𝑘 = 𝑥𝑘 + 𝑏𝑘 Δ𝑡

4th Order Runge-Kutta Method

1. Use the three methods to approximate the value of 𝑥 1 = 𝑒 in the following system:

ሶ𝑥 = 𝑥, 𝑥 0 = 1

Discuss how the errors change as you shorten the step size Δ𝑡

2. (Chaos; sensitive dependence on initial conditions) Sketch the graph of the system:

ሶ𝑥 = 𝑒𝑡 sin 𝑥 , 𝑥 0 = 0.3

(1) Use Euler’s method with Δ𝑡 = 0.3, 0.001, 0.002, 0.003.

(2) Repeat for 𝑥 0 = 0.301, 0.302.

(3) Is there any change when using RK4 method?

Why is the Runge-Kutta method “4th Order”?

import math

import numpy as np

import matplotlib.pyplot as plt

def alphaM(V):

return (2.5-0.1*(V+65)) / (np.exp(2.5-0.1*(V+65)) -1)

def betaM(V):

return 4*np.exp(-(V+65)/18)

def alphaH(V):

return 0.07*np.exp(-(V+65)/20)

def betaH(V):

return 1/(np.exp(3.0-0.1*(V+65))+1)

def alphaN(V):

return (0.1-0.01*(V+65)) / (np.exp(1-0.1*(V+65)) -1)

def betaN(V):

return 0.125*np.exp(-(V+65)/80)

Application to the Hodgkin-Huxley Model

def HH(I0, T0):

dt = 0.01

T = math.ceil(T0/dt) # [ms]

gNa0 = 120 # [mS/cm^2]

ENa = 115 # [mV]

gK0 = 36 # [mS/cm^2]

EK = -12 # [mV]

gL0 = 0.3 # [mS/cm^2]

EL = 10.6 # [mV]

t = np.arange(0,T)*dt

V = np.zeros([T,1])

m = np.zeros([T,1])

h = np.zeros([T,1])

n = np.zeros([T,1])

V[0] = -70

m[0] = 0.05

h[0] = 0.54

n[0] = 0.34

• Euler’s method:

• Q. Should we use other methods, or is the Euler method enough?

Application to the Hodgkin-Huxley Model

def HH continued

for i in range(0, T-1):

V[i+1] = V[i] + dt*(gNa0*m[i]**3*h[i]*(ENa-(V[i]+65)) + gK0*n[i]**4*(EK-(V[i]+65)) + gL0*(EL-(V[i]+65)) + I0)

m[i+1] = m[i] + dt*(alphaM(V[i])*(1-m[i]) - betaM(V[i])*m[i])

h[i+1] = h[i] + dt*(alphaH(V[i])*(1-h[i]) - betaH(V[i])*h[i])

n[i+1] = n[i] + dt*(alphaN(V[i])*(1-n[i]) - betaN(V[i])*n[i])

return V,m,h,n,t

• At low input current, examine the HH

dynamics

• Repeat for high input currents

• Does your model generate repeated spikes?

• Plot the gating variables (h,n) and describe

how the gates open and close during a spike

• Describe the dynamics of the conductances

Application to the Hodgkin-Huxley Model

• https://mark-kramer.github.io/Case-Studies-Python/HH.html

• Hirsch, Devaney, and Smale, Differential Equations, Dynamical Systems, and an

Introduction to Chaos

References

https://mark-kramer.github.io/Case-Studies-Python/HH.html

